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Summorz

Applications of the collocational method to wave propagation through a
nonuniform region with variation in only one spatial coordinate are shown for
plane and cylindrical cases. Scattering and radiation, in the absence of and
in the presence of a similar shaped conducting object are formulated. A simple
example shows the accuracy of this method. In cases where the nonuniform
region varies in more than one spatial coordinate, Green's function is applied
to formulate an integral equation. Solutions of the integral equation can be

obtained by an iterative method for small variations,



i. Introduction

During the re-entry phase of a space vehicle, a region of ionized air, called
plasma, around the vehicle is formed between the body and the shock wave. The
communication from the vehicle to ground and vige versa is then affected by the inter=
action of free electrons with electromagnetic waves in this region. |f the ionization
is sufficiently strong, a "blackout" of radio transmission may occur,

From the macroscopic point of view, the effect of the interactions between free
electrons and electromagnetic waves in a region of plasma in the absence of static
magnetic fields can be represented as an isotropic lossy dielecfric] with permeability

o= ¥, and pemmittivity

z . .
€ =6 [/ - AP )+ fer e (FPead], (1)
where w = operating angular frequency of electromagnetic wave,
YV = collision frequency of particles in plasma,
v, = (ezN/m Eo) 1/2 plasma Frequency’
N = electron density,
e,m = charge and mass of an electron respectively,
Hor €, = permeability and permittivity of vacuum.

In considering electromagnetic wave propagation, the plasma can be treated as a lossy
dielectric with permittivity given by Eq. (1). In general, the electron density and
collision frequency are functions of spatial coordinates, particularly in the direction
normal to the body of the vehicle.2 Electromagnetic waye propagation in a nonuniform
lossy dielectric is essentially the problem of re~entry communication. Of course, the

geometry is another important parameter.



Wave propagation in nonuniform media can be dealt with by solving the wave
equations derived from Maxwell's equations. Approximation techniques, for instance
the WKB method and Born opproximation have been applied to this problem2.'3'4'5
However, all these methods are valid only for small variations in permittivity.

Literoture ’/

concerning numerical solutions is ovailable, but analytic solutions ore
always more desirable.

Consider first the case where the pemittivity is a real function (for a typical
re-entering vehicle, the imaginary port is of the order ]03 smaller than the real part
at 5-10 KMC) of only one spatial coordinate is considered first. Wave propagation in
a nonunifonn dielectric slab and a nonuniform dielectric eylinder under different boundary
conditions are lreated separately. The second order differential equation of each case
is solved approximately by the method of collocation which converts the differential
equation info a system of algebraic equations, As an example to demonsirate the
accuracy of this method, the normal scattering of a plane wave by an infinite slab of
exponentially varying permittivity is considered. The application of Green's function
to wave propagation in nonuniform medium is described also. The integral equation
obtained under this consideration can be solved approximately by the method of colloca~-
tion. It is more convenient to solve the integral equation by Born approximation or
iterative method if the variation of the permittivity is small. In this treatment, the

variation can be in three spatial coordinates and the permittivity may be complex.

2. Method of Collocation.

If the collision frequency is very small in comparison with the operating frequency,
the imaginary term of Eq. (1) can be neglected provided that the real part is never
vanishingly small. The problem is confined to simple cases where the permittivity €
is a function of only one spatial dependent variable. The method of collocation 8,9 is
-upplicable to achieve approximate solutions for the second order homogeneous differential

equations which result from the Maxwell's equations. This method has three advantages:

(1) There is no limitation on the variation of permittivity as long as it is a well

behaved function.



(2) Accurate solutions can be achieved even when values of permittivity are
known (by experiment) only at a sufficient number of points in space.
(3) A closed form approximale expression for fields within the nonuniform

region can be obtained,
Four cases will be considered separately as follows:

a. Propagation of plane wave through an infinite dielectric slab,

Consider the oblique incidence of a plane wave on a plane dielectric slab of
thickness a as shown in Figure 1. The perpendicular polarization implies that the
electric field vector is perpendicular to the plane of incidence (see Figure 1 (a) ),
and parallel polarization indicates that the electric field vector is in the plane of incidence
as in Figure 1 (b). Suppose that the normalized incident fields for perpendicular
polarization and parallel polarization are given by
;
E,,
€ _ - A
Hy =L ep(phnejhs)

= exp- (/'/(,,x +/'/35),

< .
respectively, where Z ™ =+ €, . The subscripts | and 2 are used to indicate
that the quantities are related to the perpendicular and parallel polarization respectively.
The propageotion constants in the x= and z—directions are given by
l(. = ko 2L 4
I<§ = k, Sin

<
where ko :_af?’/a,,eo and the angle o is the angle of incidence. The total fields

in regions | and 1 (see Figure 1) can be wrilten as
E,, = exp-(Ghx 1k R exp (ke kb,
o - . .
By = T exp (ki)

H.,z,; =z,'[ eva(ik.’”].l(jf)‘ Rq exp (-/L,,x 7./(,} QJ.)

/7,/;; __2(7; /Zo) exp. (]'/(,,r( +J/(jj ))



where the superscript denotes the region number, the parameter T and R are the
transmission and reflection coefficients respectively, Writing the expressions for
the fields inside the dielectric slab, equating the tangential field components at

two slab surfaces, and solving for T and R yields
T, = (2i/kxD]) [F’l (0) G, (o) - F (0} G, () } exp (ikxa){ )
Ry = Dl-I {F](o) G](o) - F](a) G](o) - kxaz [F’] (o) G’ l(4::) -F'](a) G'](o)]

+ik "' () G (o) + Fy(0) G (@) - F'1(6) Gy (0) - F, (o) Gy (o) 1} exp. (2ik ),
3

Ty = (2i/k ¢ (0) D, | [Fy(0) G,fo) - Fylo) G'ylo) | exp. (ik o), (4)

Ry = D7 (Fy(a) Gylo) = F,fo) Gfa)+ [F',f0) Gla) ~Fy(a) G (o 1k 2 6 (o) € (o] ™"
sk ™ L(Fya) G7y0) = F', (o) Gyla) | /€ o)
+ (Fr)0) Gylo) = Fplo) Gy (0))/ € (a) 1) exp (2ik o). (5)

where

D, = F (o) G,(@) - F,(@) G,(0) + k " [F(o) G’ (a) = F') (o) G, (o) ]

1
+ik,” [F,0) G ) - F(0) G4 @) + F'(a) G,o) = Fla) G0 |
D, = Fylo) Gyfa) - Fpla) Gylo) + [k 2 ¢ (o) € (@)1 ™" [Fryfo) Gyfa) = Fiyfa) Gylo)]

+ik,” LF,0) Gyle) - Fyla) G% ©) ) /€ (0)

+ [F'z(u) GZ(O) - Fz(o) G'Z(o)] / Er(c) }



The derivatives of the function with respect to the argument are denoted by primes.
Fl and G

equations.

) are two linearly independent particular solutions of the following differential

Yoo+ ‘(f[ér()() «sfn,zoz] thex) =0, ©)

where the relative permittivity € isa function of x only. The corresponding function

F

and G2 are linearly independent and satisfy the differential equation

2
44
P oy~ (8w €001 Pix) + ke [€,00)-sm*edPor=0, ()
Obviously Eqgs. (6) and (7) are of the some type and can be represented by

U+ porll(n) + gex) Uex) =0, ®)

Provided that p (x) and q (x) are regular functions within the region under consideration,
i.e., p(x) ond q(x) have no singularities within the interval 0= % = q , the two

linearly independent particular solutions of Eq. (8) can be approximately expressed by8

N
Ue (x) ::n% A, éaSLeﬂx ) even function 9

M
Y00 =2 B,snl X odd function (10)

where Z!n. = nix/Ved . ZOM — mr/zf,,a . M and N are integers.
The two functions Ue and Uo are valid within e =x<=@ . The dimensionless

quantities Ve and " to be determined by the differential equation, are two real



numbers greater than or equal to unity., They become equal as M and N approach infinity.
The odd solution only is considered here. The even solution can be obtained by the

same procedure. Substituting Eq. (10) into Eq. (8) yields

M B .
2 { [zoo—-[am Jsmlmx+ P(")ch”zcn"} th o. 48))

™Moy

In order to have Eqs. (10) satisfy Eq. (8), Eq. (11) should hold at all points within the
interval 0= X <=@. But, for the purpose of approximation, the method of collocafion9

requires the equality to be fulfilled only at M points. Let these points be 0 < X < x 2

< x3< A X, =o. There are many allowable choices of points. Usually, it is
convenient to choose equal intervals between points. For each point, Eq. (11) isa
linear homogeneous algebraic equation of M unknowns Bm and the parameter v, Hence,
a system of M algebraic homogeneous equations with M unknowns and one parameter is
then formed, the rest of the work is devoted to solve the eigenvalue and eigenvecior

problem, that is

( Diwm ] Bm] =0, (12)
where D =[ 9(x;) - [‘fn]s;'n[.amxi + 77(x¢)lo,,¢ cos LomXi,

The value of v; is determined by

det. | Dew| =0 (13)

There are many roots of v, in Eq. (13). Toking convergence into account, the

desirable value is the smallest root which is greater than or equal to unity. With the

known value of 1, the expansion coefficients Bm can be calculated from Eq. (12)
1

in terms of Br’ which is the largest among the Bm s. In fact, the index r indicates r

variations of the function Uo(x) within the interval 0 < x < a.



Similar procedures lead to solutions of 1, and the corresponding expansion coefficients
An of Eq. (9). By this method, the general solutions of Eqs. (6) and (7) are found for a
specific frequency within the specified region, and hence the reflection and transmission
coefficients can be calculated by Eqgs. (3) - (5).

8 is also applicable to this

it should be mentioned that the method of least squares
cose. Multiplying Eq. (11) by sin Los x and integrating from O to a with respect to x
yields

M
2 B[ sl [t -L LTl Loy s Lon] e =00

The integrals in Eq. (14) can be approximated by a weighted sum of the relevant ordinates

at k points. That is

M K PR
B z SM/ X {C(‘(xf )—/n }Sln l'ﬁ'(y': +P(Yi)10mC(,‘.5 Zr-mzt'} =0
m:' {:l - J (‘5)
wheres =1,2,3, ... M, and X, = ia/k. The weighting coefficients W_are conventionally

1
given by either the Trapezoidal rule 0 or Simpson's one-third rule‘o. Of course, other rules
can be used as well. Eq. (15) ogain, is o system of linear, homogeneous algebraic

equations which can be explored to find the suitable values for v and Bm's. The solutions

obtained by the method of collocation will differ with different choice of the points where
Eq. (11) is satisfied, This phenomenon does not exist in the methed of least squares which is
considerably more accurate, but also more complicated.

The accuracy of the approximate method can be demonstrated by comparison with the

rigorous solutions. This can be done by considering a lossless dielectric slab of exponentially

varying permittivity. That is
€)=} exph (= x/a)

where h is a constant. The rigorous solution of the electric field in the dielectric slab

o . . 8
for normal incidence ( o = 0) can be expressed in terms of zero order Besse! function.



Table | ists the transmission and reflection coefficients calculated by the method of

2
collocation for /(k:' =(z/a). Only four poinis are used in this calculation, namely:
x =0, o/3, 2a/3, and a for the even function; x = a/4, a/2, 3a/4, and a for the odd

function. These approximate values compared with the exact values show good agreement.

Table . Comparison of the transmission and reflection coefficients
calculated by the method of collocation and the exact values,

_ A ex,u.(—/‘é,a) )’ exf.(—gjéa}

Method of T —
| Coltoention | 09161 4220°5" | 0.3802 (-84
Exact 0. 9209 /22023 Q3 7?54l?7"5‘/'

b. Radiation from a nonuniform dielectric coated sources,

In section 2-a, the method of collocation was applied to the case where the
source is at infinity. That this method is applicable fo sources near or inside a nonuniform
dielectric will be shown as follows.

The geometry under consideration is the same as in section 2-a except that an
infinite perfect conducting plane is located at x = 0. Assuming a z-oriented constant
phase magnetic line current at x =0, y =0, i.e., Eq. (0,y) = V&(y), where V, in volts, is
a constant, and & (y) is the Dirac delia function, the problem is then confined to two
dimensions, Since the magnetic field has no x~ and y-components, the z-component is

given by

Vot —neen) 2 H, + ke, o0t =0, (i¢)

where ‘_7‘1 is the two dimensional Laplacian operator, ax denotes the partial derivative

with respect to x. The y-component of eleciric field is given by

E =[/“"€(")I/ 2 H. .
7 J (17)



introducing the Fourier Transformation

H (4 4) =_f fé(ﬂ, B) exp-(jBY) dB, (18a)
}(x, 6):—_3’1-[—}%(&;) exp(-jﬁ};}d}, (18b)
where the integral is from -00 to @0, P is the transformation variable. Sub-

stituting Eq. (18a) into Eq. (16) yields

L ’ — Z -
Dy H,x @)= [ln€c) 2, H,0n ) I e 0n- 8% 1/ pr=0,19)

From Eqs. (18) and (19), the z-component of magnetic fields in air and inside the

dielectric slab may be expressed respectively by
I .
Hy o) =f Ccer explj(BY-BM)A@,

//,”oc}) = [[A) U o+ B Uy pr) exp. (589 4B,

where = l( @’) , Ue and U _are the two linearly independent particular
solutions of Eq. (19), A, B, and C, functions of B, are detennined by boundary conditions,

namely:

£ o )=V = | epapds,

/Z/;I(a’y) = /’{}Z(d,j))

I
&

Taking the boundary conditions into account, in a straight forward manner, the magnetic

4,4 = &fm 8

field in air is given by

/-‘{{I(r,}) —:_j F(g) exF-(‘}'(ﬁg—-ﬁ,X)Ja{ﬂ/ (20)

10



where

W E o) (18,4 a a.p) - a
F(p)= JZE_..L%KrL(}Q__; U, (9.8 2, UeC R AVAC ,B) U (a B)
MVACY: R Up(a, )+ FB € () Ue(a,p) -
For far field considerations, i.e., k‘() >>{,wherex =p cos 0, andy= p sin 0,
the integral of Eq. (20) can be evaluated approximately by the method of steepest

descent. 10 The result is

/é’(x,,;.):s (jarkp ) F (- lysioa) exp - jkp), 1)

where the coordinates without subscript are replaced by two coordinates with subseript
o. This is convenient to denote the observation position in the following considerations.
Now, the remaining problem is to find two particular solutions Ue and Uo' Substituting
B=- l(os;noe into Eq. (19), one obtains the standard form of Eq. (8) (regarding 90 as
a constant). Using the some procedures outlined in section 2-a Eq. (21) leads to the
solution of far field radiation. If a high speed computer is adopted to solve the problem
a routine can be set for solutions of Eq . (12). For every specific angle, run the routine
once. |n this manner, the radiation pattern can be plotted.

Another solvable example of this type is considered next. Consider the same
geometry, but let a z-oriented magnetic current sheet on the conducting wall vary
periodically in the y-direction. Under these assumptions, the magnetic fields inside

and outside the dielectric siab may be written as
i >
,44 - nzz_m U, ) exp. (/‘n n4/L) (22)
where 2L is the period of the magnetic current sheet. In air
I .
U, ()= C, exp. ('/1(-.“,
where l(: = k: ~(nn/y )£

For the magnetic field inside the dielectric slab, the function U|r'1 must satisfy the

following differential equation:
/7 s 2
L/,t %) = [(Lu enN] U+ [qum- ("UVL)JL/A(X)::O. (23)

11



The general solution of Eq. (23) may be represented by

U = A, U+ B, (L, (x),

The magnetic sheet current on the conducting wall is characterized by

E} (0 %)= \/j(j) :nzi: o, exp. (J;chy/L)}
where L
L= [ FB) exp.(-jrms/L) dy.

The y~component of electric fields in air and inside the dielectric slab can be obtained
by Eq. (17). Equating the tangential field components at both surfaces of the slab and

solving for the expansion coefficients Cn of the magnetic field in air yields

/'7}r= 2 Coexp(-jlxsjnmy/s)

where ) (24)
. Jwey a) () — U, a) U ca)
C e b L’D Wﬂ —._[,.L:__ . ...HQ R __._.'20_____________@______ e( . /( d
" Une®) Une(@)+ j b €, () Uy ) P (yhedd).

The outside field at any location can be evaluated by Eq. (24) provided that the series
of Eq. (24) is uniformly convergent, and the general solution of Eq. (23} is known. The
convergence of the series depends on the Fourier representation of the current source.
The approximate general solution of Eq. (23) for each n may be obtained by the method
of collocation as outlined in section 2-a. Note that for far field considerations, the
contribution from the terms with kn imaginary are negligible, i.e., the terms with
(nrn/L )'z> kf are omitted from Eq. (24) for the radiation pattern. This method is
especially convenient for very low frequencies where (7r// )r"> l(:e only one term

remains in the consideration of the far field rodiation.

c. Scattering of a plane wave by cylindrically symmetric nonuniform dielectric cylinder
In previous discussions, the applications of the collocational method are limited to
plane geometry. Now, the applications are extended to the cylindrical coordinates and

will be formulated as follows:

The geometry considered first is a dielectric cylinder of radius a embedded in
free space. The axes of the cylinder is colinear with the z-axis as shown in Figure 2.

The relative permittivity of the dielectric is a function of radius only, i.e., € (p),

12



for 0 < p < a, where p is the radial coordinate. The two cases of oblique
incidence will be considered, namely, the perpendicular polarization and the parallel
polarization. The z-component of the incident fields in both cases are respectively
given by

H’;-_——_ (coso(/z,) exp, (j/(xx +f/<l}))

(259)

E,,;_ = (eosa) exp. (J‘k,,x +,‘kj,})} 250

where the propagation constants kx and kz, and the wave impedance Zo are given as
before. The angle o is the angle of incidence. Using the wave transformation l, the
factor exp. (ikxX) can be expressed in terms of Bessel functions of the first kind and the

cosine function as

o0
'k X)) = 5 R
exp, (/", ) J;(S)f"?..%,l J.(5)eose (26)
where x = p cos 8, the argument of the Bessel functions is

g = Pl(" cos

Since the cylinder is assumed to have infinite length and the permittivity is uniform in

the z-direction, the resultant field must be periodic in the z~-direction and vary according

to the factor exp. (ikzz). The total fields (incident plus scattering) in air may be written

as

Hy; = (easa/2,){ T,(5)+ A H,(3)
22 (PR ta, Hn(;)]eeqn@}exp(j/(} ), @

Ed; --_-(eosod){:r,(}ﬁ b H,(5)
*ozz,’[3'",);(3)1“1:,1//,.(?’)]&5720} exp. (;‘é;)} (28)

where the function Hn(§) is the nth order Hankel function of the second kind. For

simplicity, the superscript (2) is omitted. The scattering amplitudes a, and bn, are

13



detemined by boundary conditions. The corresponding fields inside the dielectric

cylinder are given by

oA o

H,J == exXpi(j 63 )Zo Cuf(p) eosna, (29)
‘( )

Ey = epGhi) 2 d, & (e ng, 0

where the functions ¥ and are the regular particular solutions of the followin
4 3 gular p g

differential equations respectively
Y+ (P - € /e o+ (I wier - w2 2] o2 =0 @)

P ert {7 - (Lue@) + G,/(P)/W(FM; ¢ (32)
+hiwee) - n'e "1 b cer=0,

where W (p) = € (p) - sinza . With knowledge of the z~component of the magnetic

field or electric field, the ©-component of the corresponding electric and magnetic

fields can be obtained by
Ew =/ e /1ZWce] 3p M; , (33q)

Hd& = [~jw€/[(.2W((’)] '2\0 EJ} (33b)

respectively. By equating the tangential components of the fields at the surface of the
cylinder and putting terms of the some angular variation equal to zero, the resultant
algebraic equations can be solved for the scattering amplitudes a and bn for each n,

namely

—

n CoSK Y 1a)3,(5.) - howia) Fca) 3.¢3.)
kW) ) M cx,) - (@) H(5,) esX

4d,=} (34a)

14



/ I's
b= " 6@ B, W Tl 5:)cosX ~ K W) Bea) T ¢ s) (34b)

l(., WIR) & ca) HcE,) — G (4) %”(4) H(})eosi ’

where go — kacoso( . The solution will be complete if the functions 1/2_ and
9;. are known, Observe that the differential equations (31) and (32) ore of the some

form and may be written as
Vo cort (p'+ peprdilcer+ Licer ~we™ I Vicpr =0, (39)

where p (p) and q (p) are regular functions within the region &= <q . Analogous
to Eq. (10) of section 2-a, the regular particular solution of Eq. (35) may be approximated
by

M
V(f) zmz:_’ C)n J,,_(O(M(S)/ (36)

where G =¢/ua and 4 (um) =0, M is an integer. The subscript n of Vn (p),
Cnm and a . are omitted. The dimensionless parameter u, to be determined by Eq. (35),
is a real number which is greater than or equal to unity. Substituting Eq. (36) into (35)
yields

NP ,,

WZoLma POe) I (XmS) + ( §cor - af,.,/(ua,)"]jn(0(»:!")}@.‘= g, (37)
Observe that Eq. (37) is similar to Eq. (11). The same procedures outlined in section 2-a
may be used to determine the suitable value of u and the expansion coefficients Cm. In
other words, if all the sine functions are replaced by J » cosine functions by J'n , Mg
by Gm/u, and B by Cm in Eqs. (11) - (15), then all these equations and the associated

discussions are valid for obtaining the regular solution of Eq. (35).

d. Wave propagation in the presence of a cylindrical symmetric nonuniformly coated

conducting cylinder,

An important geometry being considered in this section is a conducting cylinder of

radius b coated by a cylindrically symmetric nonuniform dieleciric medium to radius a as

15



shown in Figure 3. The scattering of a plane wave by this.obiecf can be analyzed in the
same manner as in section 2-c. Considering again the oblique incidence with perpendicuiar
or parallel polarization, the incident fields in both cases are given by Egs. (25) of section
2-c. Eqs. (25) through (35) and the associated discussions are valid for the present case
except that the two functions % and ﬁ are the general solutions of Eqs. (31) and

(32) respectively, and the additional boundary conditions.

—

Yib)= 0, for perpendicular polarization

o g —_ for paralle! polarization.
B (b) =0 parallel p

are necessary. In this case, since the singular point is not included in the region b<p<a,
Eq. (35) can be solved by expressing the solution in terms of trigonometric functions.

Substituting @ =2x+b into Eq. (35) yields

ry)
Vi €O+ P Voo + @,oa V. oo =0, (38)

where Dy, — (xeb)! =+ pCx+by

QK) = §x+b) = W xr %

Eq. (38) is similar to Eq. (8) for the interval 60 <x<d, whered =a -b. Hence, the
general solution inside the interval 8 £x < can be obtained by using the same
procedures as for solving Eq. (8). In other words, if p (x) is replaced by P (x), q (x)
by Qn(x), U (x) by Vn(x) and a by d in Eqs. (8) - (15), then all these equations and
the associated statements are valid for obtaining the approximate general solution of £q.
(38). It should be noted that the series of Eqs. (27) and (28) may converge very slowly
at high frequencies.

in the presence of a z-directed constant magnetic phase current sheet on the surface
of the conducting cylinder, for no z variation, the magnetic field has only a z=component.,

inside the dielectric medium, the magnetic field is given by

d —
/7‘/; = 2 ¥, (p)exp.(jn0),

16



-—

where ¥ (p) is the general solution of Eq. (31) witha = 0. The magnetic
current sheet may be expressed as

Eo( b,o)= % fe) = ”2 7, expljna)

where vV <n
Yo =3rL jo Fcs) exF.(-jnd)c/a,
The z-component of the magnetic field in air may be written as

q
HJ = %_ Cu H, Cop) exp. (jr9),

The ©-component of all electric fields can be obtained by Eq. (33a) with a =0.

The boundary conditions at p =b and at p = a require

Cm - jur (b 13, (R0 S (@) -SORLEYD, o)

where D, =H, ( l(.d)[ K a)S.)chy)-R, ()3, (a)]
+ 6@y H, (k[ R (b) Sp(@) -~ R, (A)Sncb)],
Yiey= MR (p)+ B, Su(©,

An and Bn are constants, Rn (p) ord Sn (p) are two linearly independent solutions
of Eq. (31) with a =0, inside the closed interval b < p < a. These two
functions can be obtained by the method used in solving Eq. (38). The convergence
of Eq. (39) depends on the operating frequency and the Fourier representation of the

current source.

3. Method of Green's Function

The single spatial variation model is not adequate to represent a re-entering
space vehicle in many coses. This can be seen from Figures8-10 of reference (2).
Solutions for wave propagation in a general nonuniform medium (the permittivity and

permeability are functions of two or three spatial coordinates) are desirable for this

opplication. |t is possible to consider the stimulated polarization of the nonuniformity

17



of the permittivity and the permeability as sources, though these non-linear sources
are functions of field strength. Under this consideration, the dyadic Green's function
is applicable to formulate the radiation field of the stimulated sources., The integral
equation can be solved approximately by iterotive method for small variations. The

Born approximation is the first order of the iterative approximation,

a. Formulation:
Suppose there exist electric and magnetic sources in a nonuniform medium. The
Maxwell equations for time-hammonic varying fields [ exp (jut) ] toke the following

forms:

X H = /'UJG E+J,

VY E = "j“’.’/a H”Jm,

v (MH) = P,

V-(€E) = @,
where the capital letters without subscripts represent vector quantities. E, J, and p,
are the electric field strength, current density and charge density; H, im and Py, 9
the magnetic field strength, magnetic current density and magnetic charge density

respectively, Eliminating E or H from these equations yields

Vi =M, @)
VE+k E= N, 42)

where

M =/‘wéjm— VxJ'- A‘(z/'/ ~+ V( Pm.//u-)
+Cx(T-mxt)-V( B . 1) , (43)

N =jwud + VxJ, -2k E +(Cetu )

-
Gt x(ht VA~V (%) »

ali=k'(frgetg),
€ =6 (/+f), eV REZTIN
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Currents and charges of both electric and magnetic types are related by the equations

of continuity,
T T+ J‘w‘oe =0,
V' ju+d-'w()"l :-O.

in most cases, it is difficult to find the solution of Eq's. (41) ond (42). Other forms
of wave equations are then desirable. Assume that the dynadic Green's function

G(R | Ro) satisfies the inhomogeneous dynadic equation

.2 - 2 — . - _—
V GRIR)+ k,G(RIR,) = = S(R-R,)I (45)

where T is the unity dynadic, i.e., for any vector function F, T.F=F.T =F;

and
R = Z\X+3('}+a§

Upon multiplying Eq. (45) on the left by H and (41) on the rifht by G, subtracting
the resulting equations and integrating over a volume V enclosed by surface S,

one obtains the vector equation

J, (#-ve-cowrgldy

= -], S(R-RIH-Tdv-J M.G dv e

Applying the dynadic Green's theorem”' 12 to the left hand side of Eq. (46) and

rearranging terms yield

H(&.)=—jv M-(—T(Rm.)dv-i n-[Hx(ve G)+ (vrH)x G
-+ H (V-é:) - (v /‘/)5 _JO(S, (47)
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where n is the unit vector outward normal to the surface, The integral equation
for the electric strength can be obtained simply by replacing H by E, and M by

N inEq. (47). That is

E(R)= —fv N: GCRIR.) V—i n[Ex(vx@)+ (W E)x G

+B(V-G)~(V-E)G JdS, g

The Green's functions of Egs. (47) and (48) satisfies the same boundary conditions
of the magnetic field strength H and the electric field strength E respectively.
Hence they may be different. For an infinite domain with specification of outgoing

waves at infinity, they are equal and may be written as

G(RIR) =TI P(rIR,) (49)

where

_ (_}_- (2)
(é(&lR,) - g- ’L/t‘ ( I(.,-/E“Raf) for two dimensional problem

qg (R | R.):: QJ/G/K’R‘%;[(R-RG’ for the three dimensional problem,

and the two functions f and g are vanished at infinity. Physically, the problem is
considered for the uniform medium with additional sources, iwn gHand jue fE.

Substituting Eq. (49) into Eqs. (47) ond (48) and taking into consideration that

V-G =V,
AR (vxG) = Ax v
n-AxG ="rxA) G,
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where A is an arbitrary vector, yields
/-/(Ka)==‘jv{¢[)'w63m—Al<zH—- Yex (vxH —J)]
+vx T - V(v }dv
-ggs [nx Hx 7 Hn Hoyvg + jwe qS(an)]ds

(50)

and
E(R.,) =-—~jv<[d>[jq)/u3 -ak'e -Yex (v E+T,)]

— Vb« J, - s v £)§dV
- (e Ve +(n-E )7cp —fomdp (nxrf))els (51)

Rewriting Eqs. (41) and (42) as

VKVXH =k H = akPH + Cex(vntt - T

“JWEJ e+ IX T, e
VX oxE—k'E = 8k E + Bix(prE + 3, (53)

~Jund =~ vxJ,,

constructing a vector Q = A¢, putting H or E with Q in the Green's second
vector identity and following the procedures as outlined by Strc:ﬂon)3 gives exactly

the same as Eqs. (50) and (51).

b. Scattering of a plane wave by nonuniform media

For an application of the method described previously, the scattering of a
plane wave by a nonuniform medium with small variations in € and p will be
considered. The small variation means that f and g, small compared to unity,

are continuous functions asymtoptic to zero or equal o zero at infinity. Since the
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surface S under consideration is receded to infinity, the contributions of the surface

integrals vanish. Thus, Eqs. (50) may be written as
H(R) = t{ ':"(R.)fjv{[okz//+ Zex vnH]p
-(%H) 745}"(\// (54)

where H = H® + Hin' , and Hin and H® are the H fields of the incident and the
scattered wave. By Born-approximation, the scattered-field terms in the integral

are neglected. Physically, this means that the incident wave stimulates the radiation
from the nonuniform zone without interaction. Under this assumption, Eq. (54) is

reduced to be

H (R)——j (Al/ //"",’. _ZC_XVY//UI)4, H‘-"Vq‘)}JV (55)

Confining the nonuniform zone to a finite region, the far field approximation requires

that
cblz: FCR,RQ)(—/’/SMRQ))YL
d)’ ~ T(R, RO)/dR' R.|

where

FIRR,) = exp- ( -J‘L.l Re|) G’f'r-(j((,k. -R,(R,I)_

Eq. (55) can be computed in some simple cases, For example, if € and u are
independent of angular coordinates, the volume integral of Eq. (55) can be evaluated
without much difficulty. The electric field strength can be obtained by the same

procedures, that is
E(R) j{(Ak £+ ZEx VrE“‘)¢ E.“‘ Vqé}a(v (56)

Usually it is more convenient to utilize the H® or E° computed by Eq. (55) or (56) to

solve Maxwell's equations for E° or H® respectively,

22



¢. Radiation from line source in nonuniform media

The problem is again confined to nonuniform media of finite extent and of
simple geometry. The volume and surface integrals of Eqs. (47) and (48) are

integrated over this finite region with the dynadic Green's function satisfying
o & - 2 = —
VE®RIR) th FRIRY=-F(R-R)T

where krz = u2 po eoer M and 6'_ and W are the average valuesof 1 + fand 1 4+ g
respectively. Of course, the Green's function satisfies the appropriate boundary
conditions. Egs. (47) and (48) may be solved by approximate methods to evaluate

the field intensities ot the surface. The space outside the nonuniform zone is free
space. The fields strength in this region are solutions with specification of outgoing
waves of the uniform wave equation, Their amplitudes can be evaluated by matching
the tangential components at the boundary with those calculated by Eqs. (47) and (48)
correspondingly. For example, consider a conducting tylinder of radius b and
infinite length coated by a dielectric cylindrical ring of radius a. The permittivity
is characterized by € az/ r2 , where r is the radius from the axis. The
permeability is constant. The ratio of a to b is equal to 1.2, for this case

e = 1.1934. Assuming that no current sources exist in the dielectric and free space
but an axial magnetic line current V6 (8)/b on the surface of the conducting cylinder,
the Green's function is derived by considering an axial magnetic line current

& (r - ro) & (0 - eo) /ro in the uniform dielectric ring, That is

jues) r=r,
e

S g/ , l‘ f Jn “‘ !
—-_Ig It( § Wi ) “ H”-]nd‘r‘)’ Bn“n( r‘)

Tl 1, ) H, ko),

where
A, = D' H,tk b3k DIIE H kN, (k) - k)N, (h €)]
+ 3,0k DN DY Hh (ROt 8)~J€ HChay H, cka)] |
B =Dy ] 5kl 71k b) VG A k) ol bo0) = H, k) ] (e )]
+ Hyh ) Tk L, ke, ey ) =3 T ko) HIC o2},
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Dy = Hy ot FLCke b chv2) - 3./ Chet) Nl b7
+J& H,Cka) [k N,k b)

where Jn ond Nn are Bessel functions of the first and second kind, Hn is Hankel
functionsof the second kind. The z-component of magnetic field strength in the

dielectric is given by

4 /-g"(/e) = f G(RIR k, (a7r,* ~1.1934) H;( R)- &2 ch Re)ldS,

v

*’J (GRIRI2 H“(&) HRIZGRIRY, G

+J‘w€(b)Vn_Z_mfa,‘3'“(l(,r)+ bth(lf,r}JJ"a (57)

where

Q= 2 (Dl b) [ H/ k), (ky0) ~ Hy i) N o))

b, = R(D.kb) [, (k)T ka)~ I, H,tha) T, ha)]

The magnetic field strength in air may be expressed by

[ %)
= ngm Ca H"(k}/) e (me)- (58)
Eq. (17) may be solved by iterative method, that is, let

/730((/): j-cift(—, V"z [aﬂj;( L,r)-kbnM,(/(r U]exﬂ G re), (59)

Then substituting Eq. (59) into the right hand side of Eq. (57) one obtains sz (])(R).
Physically, Eq. (59) represents the magnetic field in the dielectric if the permittivity
is uniform, sz(]) is the first order approximation of the magnetic field or the H

field of the Born approximation. Higher order approximations can be obtained



accordingly. However, the convergence is not assured for some cases. In Table |,
the zero order and the first order approximate values of the expansion coefficient Co

are listed to compare with the exact value ot kru = 0,01,

Table |  Approximate and exact values of Co/ we V

zero order . first order exact
0.273 0.236 0.25
Conclusion:

in the foregoing consideration, the method of collocation and the method of
least squares were shown applicable to wave propagation through nonuniform regions
with variation in only one spatial coordinate. Scattering and radiation in plane and
cylindrical cases were formulated by these two methods., Similar analysis will lead
to applications of these methods for spherical geometry. The method of collocation

has three advantages:
(1) There is no limitation on the variation of permittivity.

(2) Good solutions can be achieved for values of pemittivity known only at

a few but sufficient points in space.

(3) A closed form approximate expression for fields within the nonuniform

region can be obtained.

In cases where the nonuniform region varies in more than one spatial coordinate,
Green's function is shown to formulate the integral form of the wave equation,
Solution of the integral equation can be obtained by an iterative method for small

variations.
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Figure 2 = Scattering of a plane wave by a cylindrical
nonuniform dielectric materiol,
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